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In a note entitled 11 Simple illustration of the equivalence of a wave and of 

1 a particle description for light 11
9 T. Ferbel shows that if light is reflected 

at normal incidence from a massive mirror receding from the light source with low 

mirror V << c then there are two entirely different way~ to show that 
0 

the wave length A is increased after reflection by an amount di\ given by 

(1) 

where v=c is the of light. The first way is to assume light is a wave. Then 

the usual derivation of the Doppler effect gives Eq.(l). (The unfamiliar factor of 

.(1) can be thought of in terms of images: if the mirror moves with speed V 
0 

the of a stationary light source moves with speed 2V .) The second way is to 
0 

assume that light is a particle having zero rest mass, and thus having energy E 

momentum p and velocity v related by 

E "' cp, V""C. (2) 

With the additional assumption that these particles have wave properties .and obey 

the de Broglie relation 

(3) 

where h is Planck's constant, and with the assumption of energy and momentum conser-

vation in the elastic collision with the wall (a "Compton" collision),Ferbel shows 

th~1t one obtains Eq.(l). The particle picture is in that sense eouivalcnt 

to tho uavc 

In this note we generalize the argument from photons to all particles~-

non~relativistic electrons~ relativistic electrons, photons~ etc~- and also 

turn the argument around: We assume that all these particles have wave properties 

and hence must exhibit a Doppler shift given by Eq.(l) when they reflect from 

a massive slowly receding mirror. We then show that all these particles must 

the de Broglie relation , with h an unknown constant to be determined 

interference experiments to measure A for particles of known momentum. 
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Before we can generalize to other particles besides photons we must 

remove an ambiguity in Eq.(l): does v represent the phase velocity v~ or 

does it instead represent the group velocity v ? Or perhaps neither? For 
g 

light in vacuum we have =c and the ambiguity does not arise ; but 

for ictes the phase and group velocities 

are different. Therefore we mu$t remove'the ambiguity from Eq.(l). 

Consider a stationary observer and a wave source retreating from 

the observer with velocity v ~ with v. <<v .J.. During the period T in which 
s s 'fJ 0 

the source emits one wave the source travels a distPnce v T away from s 0 

the observer and the "leading edge" of the wave travels a distance vr/JTo 

towards the observer, where v r/J is the phase velocity at the new "stretched" 

wavelength A.~ which is longer than the original wavelength A • The time T 
0 

for this wave to pass the stationary observer is 

T=(v T +v..~.T )/v..~. = T [l+(v /v..~.)]. so 1!10 \II 0 s \II 
(4) 

For the shift in period T,.and in angular frequency w=2TI/T, we therefore have 

To obtain the Doppler shift in wavelength we could return to 

Eq.(4) and use the fact that v¢T=A.. But there is an easier way. 

The phase and group velocities are given by 

vr/J= w/k~ vg=dw/dk, (6) 

with k=2n/A.. Therefore we can simply write down 

-dA./A.= dk/k = (dk/dw)(dw/w)(w/k) = (v~/vg)(dw/w). 

Combining Eqs.(7) and (5) then gives 

v /v , 
s g 

(8) 

( 

(7) 

which resolves the ambiguity. For the case of interest, the moving source is 

the image of a stationary source in a mirror 

that v =2V , and Eq.(8) becomes 
s 0 dA/A.=2V /v • 

0 g 

moving with velocity V , so 
0 

( 9) 



We are now ready to consider ic scattering of a parti.cle frol1l. 

the slowly moving wall. We cortsider first the "opposite extreme" from a 

photon~-a nonrelativistic electron. 

A nonrelativistic electron of rest mass and velocity v is traveling to the 

right, catching up with the mirror. (We need v>V .) Let the electron velocity 
0 

after the elastic collision be vv~ with v' negative if the electron is moving to 

the left after the collision and positive if it is still moving to the right. 

An calculation using conservation of energy and momentum yields the 

well-known result that the collision does not change the magnitude of the relative 

of the electron and the mirror but just reverses its sign. (The sign 

reverses because they are moving together before the collision and apart afterwards.) 

Assume the mirror is so massive that its velocity is unchanged by the collision. 

Equating the relative velocity "before" to its negative ''after'' gives 

v-V = -(v'-V ) (10) 
0 . 0 , 

v'=2V -v 0 • (11) 

We see that if v is greater than 2V then v' is negative and the particle bounces 
0 

back to the left. We are only interested in the case where v is very large compared 

with 2V • In that case the speed jv' I after the collision equals -v'. Then the 
0 

shift in particle speed, which we call dv, is given by 

dv = lv' I - v = -v 1 -v=-2V 
0 

Now divide Eq.(l2)by the initial speed v to get 

dv/v "" -2V /v . 
0 

(13) 

(12) 

Notice that Eq.(l3)closely resembles Eq.(9) except for the important minus sign. 
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Now assume that these nonrelativistic electrons have both a particle 

velocity v and a wavelength A. We then assume that both Eqs.(l3) and (9) 

hold, and we assume v in (9) equals the particle velocity v in (13). Adding 
g 

Eqs.(9) and (13) then gives the differential relation d[ln(Xv)]=O, which 

to give Av= constant·. Multiplying this constant by the rest 

mass m gives 
0 Am v "" constant. 

0 
(14) 

Eq.(l4) is equivalent to Eq.(3) for a nonrelativistic particle having p=m v. 
0 

The numerical value of the constant must be determined by other experiments. 

Now consider the more general case of a relativistic electron catching up 

with the same mirror and undergoing an elastic collision. We again assume the 

mirror is so massive that its velocity is unchanged by the collision. For a 

relativistic particle the connection between total energy E, momentum p, rest 

mass m
0

, and velocity v can be written 

E2 2 2 + ( 2)2 
~ c p m

0
c , 

2 
v = c p/E. 

(15) 

(16) 

(For the special case that the rest mass m is zero, Eqs. (15)and(l6) reduce 
0 

to Eq.(2) and we then have the case considered by Ferbel.) Before the collision 

the electron momentum has magnitude p and the electron is traveling to the right 

catching up with the mirror. After the collision the electron is traveling to the 

left with momentlm of magnitude p'. Energy and momentum conservation give 

p + MV = -pI + MV' 

where M,, V, and V1 refer to the massive mirror. 

Rearranging terms these become 

E-E' = ~M(V'-V)(V'+V), 

p+p' "" M(V'-V). 

(17) 

(18) 

(17 1
) 

(18 1
) 



Divide (17')by (18') Then take V'=V = V
0

• Also take p'+p~2p; i.e.,p' is only 

slightly less than p. Call E'-E=dE. Then (17') and (18') give 

d£/p "' -2V 
0 

• (19) 

2 Note that differentiation of Eq. (15) gives EdE ~ c pdp, i.e., 

where we used v from Eq.(l6) in the last step. Combining (20) and (19) gives 

dp/p "" -2V /v. (21) 
0 

) is the relativistic generalization of Eq.(l3). Now assume that relativistic 

elec t:rons have wave properties and obey Eq. (9) as well as (21). Adding (9) and (21) 

then gives the differential relation d[ln(:\p)]= 0, which integrates to give 

Ap "' constant • (22) 

.(22) is the :relativistic generalization of Eq.(l4). It holds for all particles--

slow electrons, relativistic electrons, photons 1 etc. 

An interesting parallel to the ambiguity in Eq.(l) [v=v~?, vg?] 

is the following ambiguity: Suppose we know the results of the photoelectric 

effect and can therefore write for the photon energy E=hf, where f is the 

For light, f=c/:\, and for particles of zero :rest mass, E=cp. 

Therefore v1e can immediately write down that for photons we have :\=h/p, 

;:md we also have the completely equivalent formula A=hc/E. If we now want 

to guess the relation for material particles, should we guess A=h/p? Or 

should it be :\=hc/E, with perhaps E=p2/2m for non-relativistic particles, 

and given by Eq. (15) for relativistic particles? We have shown how, by using 

the correct Doppler shift, we can unambiguously decide that the correct 

relation must be :\=h/p, not hc/E, for material particles. It is interesting, 

and we leave it as an exercise for the student, that if we had, incorrectly, 

taken the Doppler shift in wavelength to bed:\/\"" v5/v~ , then we would have 



obtained the incorrect result A~hc/E, where E is the kinetic energy for a 

nonrelativistic particle, or the total energy for a relativistic particle. 

To summarize: once we believe that light, nonrelativistic electrons, relativistic 

electrons, etc., must all have both wave and particle properties then by considering 

elastic reflection from a slowly moving massive mirror we can "derive" the de 

Broglie relation as expressed by Eq.(2~. Of course there are other ways,and 

that is not the way de Broglie did it. 2 
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